II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

ELECTRICAL MACHINES - I (ELCTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Find expression for magnetic force developed in a doubly-excited translational magnetic system.	L3	CO 2	7 M
	b)	Define the key magnetic quantities used in magnetic circuit analysis and discuss their significance in understanding magnetic systems.	L2	CO1	7 M
OR					
2	a)	Derive expressions for field energy and co-energy in a singly-excited electromechanical unit.	L3	CO 2	7 M
	b)	Describe the B-H curve of magnetic materials and its importance in characterizing magnetic behavior.	L3	CO 2	7 M

UNIT-II					
3	a)	A long-shunt compound generator delivers a load of 50 A at 500 V and has armature, series field and shunt field resistances of $0.05 \Omega, \quad 0.03 \Omega$ and 250Ω respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop.	L3	CO 2	7 M
	b)	Explain the armature reaction in detail for a DC machine.	L4	CO4	7 M
OR					
4	a)	Explain the process of commutation and list various methods of improving Commutation.	L3	CO 2	7 M
	b)	An 8-pole generator has an output of 200A at 500 V , the wave-connected armature has 1280 conductors and 160 commutator segments. If the brushes are advanced 4 -segments from the no-load neutral axis, estimate the armature demagnetizing and cross-magnetizing ampere-turns per pole.	L4	CO4	7 M
UNIT-III					
5	a)	Explain the significance of back EMF of a DC motor. Derive the torque equation of a DC motor.	L4	CO4	7 M
	b)	A 220 V, D.C. shunt motor takes 4A at noload when running at 700 r.p.m. The field resistance is 100Ω. The resistance of armature at standstill gives a drop of 6 V across armature terminals when 10A were passed through it. Calculate (i) speed on load (ii) torque in $\mathrm{N}-\mathrm{m}$ and (iii) efficiency. The normal input of the motor is 8 kW .	L4	CO4	7 M

OR

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6 \& a) \& \begin{tabular}{l}
Explain speed-current, torque-current and speed-torque characteristics of DC shunt motor. \\
A 220 V series motor running at a certain speed takes 25 A . Its armature and series field resistances are 0.3 ohm and 0.1 ohm respectively. Find the resistance to be inserted in series with the armature to reduce the speed by \(30 \%\). Assume that the total torque varies as the cube of the speed and the flux is proportional to the current.
\end{tabular} \& L4

L4 \& CO 4

CO 4 \& 7 M

7 M

\hline \multicolumn{6}{|c|}{UNIT-IV}

\hline 7 \& a) \& Derive an expression for the emf induced in a transformer winding. \& L3 \& CO3 \& 7 M

\hline \& b) \& A single-phase transformer with a ratio of $440 / 110 \mathrm{~V}$ takes a no-load current of 5 A at 0.2 power factor lagging. If the secondary supplies a current of 120 A at a p.f. of 0.8 lagging, estimate the current taken by the primary. \& L3 \& CO3 \& 7 M

\hline
\end{tabular}

OR

8 a) A residential apartment arranged an 800 kVA transformer for feeding power to their residents. It has core loss of 1.42 kW and full load copper loss of 7.5 kW . Calculate the all-day efficiency if the transformer operates on the following duty cycle:

Time duration	Load details
6 hours	$500 \mathrm{~kW} @ 0.8 \mathrm{pf} \mathrm{lag}$
4 hours	$700 \mathrm{~kW} @ 0.9 \mathrm{pf} \mathrm{lag}$
4 hours	$300 \mathrm{~kW} @ 0.95 \mathrm{pf} \mathrm{lag}$
10 hours	No Load

	b)	Explain the operation of transformer operating on R-L load with the help of a phasor diagram.	L3	CO3	7 M
UNIT-V					
9	a)	Write a brief note on tap changing transformers.	L4	CO5	7 M
	b)	A $5 \mathrm{kVA}, 110 / 110 \mathrm{~V}$, single phase, 50 Hz transformer has a full load efficiency of 95% and an iron loss of 50 W . The transformer is now connected as an auto transformer to a 220 V supply. If it delivers a 5 kW load at unity power factor to a 110 V circuit, calculate the efficiency of the operation and the current drawn by the high voltage side.	L3	CO3	7 M
OR					
10	a)	What are the various three-phase transformer connections? Explain the star-star and star-delta connections with neat diagrams.	L4	CO5	7 M
	b)	Explain about the auto transformer and compare it with two winding transformer.	L4	CO5	7 M

